본문 바로가기 메뉴 바로가기

복습용

프로필사진
  • 글쓰기
  • 관리
  • 태그
  • 방명록
  • RSS

복습용

검색하기 폼
  • 분류 전체보기 (96)
    • 알고리즘의 기초 (14)
    • 머신러닝 (15)
    • 기초 알고리즘 문제 풀이 (44)
    • 파이썬 기초 (0)
    • 신호 및 시스템 (6)
    • 매트랩 (5)
    • 데이터 관리 및 분석 (2)
    • 컴퓨터 구조 (1)
    • 복습 (0)
    • 일반 개발 (1)
    • 그래픽스 (7)
  • 방명록

Logistic Regression (1)
[ML] 3. Logistic Regression

3.0 Intro Chapter 2에서 다룬 linear model의 핵심 idea는 x를 w와 선형결합한 signal이었다. linear regression과 linear classification은 모두 이를 바탕으로 한 model이었다. 이 때 linear classification은 'Hard' binary classification이었고 0이라는 Hard한 threshold를 기준으로 binary한 결과값을 출력했다. logistic regression은 'Soft' binary classification으로써 binary response에 대한 probability를 출력하는 model이다. 3.1 Logistic Regression Intro에서 이야기한 바와 같이 Logistic regre..

머신러닝 2020. 7. 27. 20:50
이전 1 다음
이전 다음
공지사항
최근에 올라온 글
최근에 달린 댓글
Total
Today
Yesterday
링크
TAG
  • 영상처리
  • RGB이미지
  • 딥러닝
  • Andrew ng
  • 컴퓨터과학
  • gradient descent
  • 신호 및 시스템
  • Logistic Regression
  • 매트랩 함수
  • Neural Network
  • 자연어 처리
  • CNN
  • 사진구조
  • 매트랩
  • 컴퓨터 과학
  • rnn
  • 연속 신호
  • 머신러닝
  • 신경망
  • 머신 러닝
  • 이산 신호
  • 이미지처리
  • 인덱스 이미지
  • 밑바닥부터 시작하는 딥러닝
  • 이미지
  • 순환 신경망
  • CS
  • ML
  • 영상구조
  • NLP
more
«   2025/09   »
일 월 화 수 목 금 토
1 2 3 4 5 6
7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30
글 보관함

Blog is powered by Tistory / Designed by Tistory

티스토리툴바

단축키

내 블로그

내 블로그 - 관리자 홈 전환
Q
Q
새 글 쓰기
W
W

블로그 게시글

글 수정 (권한 있는 경우)
E
E
댓글 영역으로 이동
C
C

모든 영역

이 페이지의 URL 복사
S
S
맨 위로 이동
T
T
티스토리 홈 이동
H
H
단축키 안내
Shift + /
⇧ + /

* 단축키는 한글/영문 대소문자로 이용 가능하며, 티스토리 기본 도메인에서만 동작합니다.