이 글은 글 하단의 Reference에 있는 강의, 교재를 보고 정리한 것입니다. 4.0 Intro 앞서 학습한 perceptron은 이론상 2개의 layer로 모든 함수를 표현할 수 있지만, 그것이 복잡하고 사람이 직접 가중치를 설정해야 한다는 문제가 있었다. 하지만 지금부터 다룰 신경망(Neural Network)은 가중치 매개변수의 값을 데이터로부터 적절하게 학습할 수 있다. 이번 장에서는 다음 것들에 대해 학습한다. 신경망의 개요 신경망의 입력 데이터 처리과정 매개변수를 학습하는 방법은 다음 장에서 다룬다. 4.1 Perceptron to NN(Neural Network) 신경망은 perceptron과 닮은 점이 많다. 언뜻 밑의 을 보면 그냥 multilayer percetron(MLP)이 NN..
perceptron은 신경망의 기원이 되는 알고리즘으로, 신경망과 딥러닝으로 나아가는데 배경이 되는 알고리즘이다. 오래된 알고리즘이지만 제대로 이해해보자. 1.1 Perceptron의 정의 perceptron은 다음 요소들에 의해 정의되는 알고리즘 모델이다. 입력(x) 가중치(w) 출력(y) 임계값(t) 이 때 입력은 n차원의 벡터일 수 있고, 가중치 w는 이 입력과 동일한 차원을 가져야 한다. 이 때 출력은 입력과 가중치의 내적인 x*w가 설정한 임계값 t를 넘을 경우 1, 임계값 t를 넘지 않을 경우 0이 된다. 다음 은 이런 perceptron을 그림으로 나타낸 것이다. x의 weighted sum이라는 용어는 x와w의 내적을 말한다. 1.2 Perceptron으로 논리 회로 만들기 이렇게 기본적으..
- Total
- Today
- Yesterday
- 딥러닝
- 사진구조
- 순환 신경망
- CNN
- 매트랩 함수
- RGB이미지
- CS
- 신호 및 시스템
- 컴퓨터과학
- 이미지처리
- 연속 신호
- 밑바닥부터 시작하는 딥러닝
- 이미지
- Logistic Regression
- NLP
- 머신 러닝
- 컴퓨터 과학
- gradient descent
- 영상처리
- rnn
- ML
- 이산 신호
- 자연어 처리
- 매트랩
- 인덱스 이미지
- Neural Network
- 신경망
- Andrew ng
- 머신러닝
- 영상구조
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |